
Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

BLOCK SOLUTIONS

Smart Contract Code Review and
Security Analysis Report

for
ALBUBUX BEP20 Token Smart

Contract

Request Date: 2025-09-19
Completion Date: 2025-09-20
Language: Solidity

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

Contents
Commission ...3

ALBUBUX Properties ...4

Contract Functions ...5

Executables ...5

Checklist...6

Executable Functions ...8

ALBUBUX BEP20 TOKEN Contract ...8

Testing Summary ...14

Quick Stats: ..15

Executive Summary ...16

Code Quality ..16

Documentation ...16

Use of Dependencies..16

Audit Findings ..17

Critical ...17

High ...17

Medium..17

Low ..17

Suggestions: ...18

Conclusion ...20

Our Methodology..20

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

Commission

Audited Project ALBUBUX BEP20 Token Smart Contract
Smart Contract Address 0x4843588e66700eD5E2C4F8BC6f9b61E686d9cDa9
Contract Creator 0xeBfBF0F46ebeaf7a8706873F97348520bdBaD701
Contract Owner 0xeBfBF0F46ebeaf7a8706873F97348520bdBaD701
Blockchain Network Binance Smart Chain Mainnet

Block Solutions was commissioned by ALBUBUX BEP20 Token Smart Contract owners to

perform an audit of their main smart contract. The purpose of the audit was to achieve the

following:

Ensure that the smart contract functions as intended.

Identify potential security issues with the smart contract.

The information in this report should be used to understand the risk exposure of the smart contract,

and as a guide to improve the security posture of the smart contract by remediating the issues that

were identified.

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

ALBUBUX Properties

Contract Token name Albubux

Total supply 4,000,000,000,000,000 BUBX

Symbol BUBX

Decimals 9

Holders 6

Total Transfers 23

Buy Fee 1.02%
(same as general transfer unless the pair or buyer is
excluded).

Sell Fee 1.02% (same as general transfer unless excluded).

Transfer Fee 1.02% (applies unless sender or recipient is excluded).

Charity Tax 1 %

Auto Liquidity 0.01%

Reflection (redistributed to
holders)

0.01%

Charity Address 0x271AA85AA4CD2e4CE45D97823fb0eeeb8334c908

Uniswap V2 Router 0x10ED43C718714eb63d5aA57B78B54704E256024E

Uniswap V2 Pair 0x6d9C130A9D7ea7078D16aD35D6907f034487483C

Smart Contract Address 0x4843588e66700eD5E2C4F8BC6f9b61E686d9cDa9

Contract Creator 0xeBfBF0F46ebeaf7a8706873F97348520bdBaD701

Contract Owner 0xeBfBF0F46ebeaf7a8706873F97348520bdBaD701

Blockchain Network Binance Smart Chain Mainnet

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

Contract Functions

Executables

i. function approve(address spender, uint256 amount)public override returns (bool)
ii. function decreaseAllowance(address spender, uint256 subtractedValue) public

virtual returns (bool)
iii. function deliver(uint256 tAmount) public
iv. function excludeFromReward(address account) public onlyOwner
v. function excludeFromFee(address account) public onlyOwner

vi. function increaseAllowance(address spender, uint256 addedValue) public virtual
returns (bool)

vii. function renounceOwnership() public virtual onlyOwner
viii. function setCharityFeePercent(uint256 charityFeeBps) external onlyOwner

ix. function setLiquidityFeePercent(uint256 liquidityFeeBps) external onlyOwner
x. function setSwapBackSettings(uint256 _amount) external onlyOwner

xi. function setTaxFeePercent(uint256 taxFeeBps) external onlyOwner
xii. function transferOwnership(address newOwner) public virtual onlyOwner

xiii. function transfer(address recipient, uint256 amount) public override returns (bool)
xiv. function transferFrom(address sender, address recipient, uint256 amount) public

override returns (bool)
xv. function includeInReward(address account) external onlyOwner

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

Checklist

Compiler errors. Passed

Possible delays in data delivery. Passed

Timestamp dependence. Passed

Integer Overflow and Underflow. Passed

Race Conditions and Reentrancy. Passed

DoS with Revert. Passed

DoS with block gas limit. Passed

Methods execution permissions. Passed

Economy model of the contract. Passed

Private user data leaks. Passed

Malicious Events Log. Passed

Scoping and Declarations. Passed

Uninitialized storage pointers. Passed

Arithmetic accuracy. Passed

Design Logic. Passed

Impact of the exchange rate. Passed

Oracle Calls. Passed

Cross-function race conditions. Passed

Fallback function security. Passed

Safe Open Zeppelin contracts and implementation usage. Passed

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

Whitepaper-Website-Contract correlation. Passed

Front Running. Passed

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

Executable Functions
ALBUBUX BEP20 TOKEN Contract

the number of tokens to be transferred. The transfer() function overrides the standard ERC-20 logic
and calls the internal _transfer function, which applie
tax, reflection distribution, liquidity collection, and charity allocation before completing the
transfer.

Leaves the contract without owner. It will not be possible to call `onlyOwner` functions anymore.
Can only be called by the current owner. Renouncing ownership will leave the contract without an
owner, thereby removing any functionality that is only available to the owner

This will let the contract owner update the reflection tax percentage, where taxFeeBps is given in
basis points (e.g., 100 = 1%). The function updates _taxFee and then checks that the sum of all
fees (_taxFee + _liquidityFee + _charityFee) does not exceed the maximum limit of 25%
(MAX_FEE).

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

This will transfer tokens from a specified sender address to a recipient address, using the allowance
previously approved by the sender. The amount is the number of tokens to be transferred. The
transferFrom() function overrides the standard ERC-20 logic by calling the internal _transfer

by the transferred amount, ensuring the spender cannot exceed the approved limit.

Approve the passed address to spend the specified number of tokens on behalf of msg. sender.
amount

Transfers ownership of the contract to a new account (`newOwner`). Can only be called by the
current owner

The includeInRewards() function allows the contract owner to re-include addresses in the
reflection (rewards) mechanism, enabling it to receive proportional token rewards again.

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

The excludeFromRewards() function allows the owner to exclude a specific address from
receiving reflection (reward) distributions by calling the parent _isExluded() method.

This function allows the owner to exclude an address from transaction fees and transfer limits,
enforcing a cap on the total number of such exclusions to prevent abuse.

This function increases the allowance of a spender by a specified addedValue for the caller
(owner), enabling the spender to spend more tokens on the owner's behalf.

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

This function decreases the allowance granted to a spender by subtractedValue for the caller

the safety check passes.

This will let the contract owner update the liquidity fee percentage, where liquidityFeeBps is given
in basis points (e.g., 100 = 1%). The function updates _liquidityFee and then checks that the
combined total of all fees (_taxFee + _liquidityFee + _charityFee) does not exceed the maximum
cap of 25% (MAX_FEE).

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

This will allow a non-
back into the reflection pool. The function first checks that the caller (sender) is not excluded from

eflection. It then calculates the reflected

reflected balance _rOwned[sender], reduces the global reflection supply _rTotal, and increases the
total fees counter _tFeeTotal.

This will let the contract owner update the charity fee percentage, where charityFeeBps is given
in basis points (e.g., 100 = 1%). The function updates _charityFee and then verifies that the
combined total of all fees (_taxFee + _liquidityFee + _charityFee) does not exceed the maximum
cap of 25% (MAX_FEE).

This will let the contract owner set the threshold of tokens that must accumulate in the contract
before triggering the automatic liquidity-adding process. The _amount must be at least 0.05% of
the total supply, otherwise the transaction reverts. Once set, numTokensSellToAddToLiquidity is
updated and an event SwapAndLiquifyAmountUpdated is emitted.

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

Testing Summary

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

Quick Stats:

Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed

Solidity version too old Passed

Integer overflow/underflow Passed

Function input parameters lack of check Passed

Function input parameters check bypass Passed

Function access control lacks management Passed

Critical operation lacks event log Passed

Human/contract checks bypass Passed

Random number generation/use vulnerability Passed

Fallback function misuse Passed

Race condition Passed

Logical vulnerability Passed

Other programming issues Passed

Code
Specification

Visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed

Use keywords/functions to be deprecated Passed

Other code specification issues Passed

Gas Optimization Assert () misuse Passed

Passed

Passed

Passed

Business Risk The maximum limit for mintage not set Passed

Passed

Passed

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

Overall Audit Result: Passed

Executive Summary
According to the standard audit assessment, Customer`s solidity smart contract is Well-Secured.
Again, it is recommended to perform an Extensive audit assessment to bring a more assured
conclusion.

We used various tools like Mythril, Slither and Remix IDE. At the same time this finding is based
on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable vulnerabilities
are presented in the Quick Stat section.
We found 0 critical, 0 high, 0 medium and 0 low level issues.

Code Quality

The ALBUBUX Smart Contract protocol consists of one smart contract. It has other inherited
contracts like IERC20, Ownable, BaseToken. These are compact and well written contracts.
Libraries used in ALBUBUX Smart Contract are part of its logical algorithm. They are smart
contracts which contain reusable code. Once deployed on the blockchain (only once), it is assigned
a specific address and its properties / methods can be reused many times by other contracts in
protocol. The BLOCKSOLUTIONS team has not provided scenario and unit test scripts, which
would help to determine the integrity of the code in an automated way.
Overall, the code is not commented. Commenting can provide rich documentation for functions,
return variables and more.

Documentation

can quickly understand the programming flow as well as complex code logic. We were given a
ALBUBUX Smart Contract smart contract code in the form of File.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are based on

you arehere

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

well-known industry standard open-source projects. And even core code blocks are written well
and systematically. This smart contract does not interact with other external smart contracts.

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to

exploit and can lead to token loss etc.

High

High-level vulnerabilities are difficult to exploit;
however, they also have significant impact on smart contract
execution, e.g. public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix; however, they

Low
Low-level vulnerabilities are mostly related to

significant impact on execution

Lowest / Code Lowest-level vulnerabilities, code style violations
Style / Best
Practice execution and can be ignored.

Audit Findings
Critical

No Critical severity vulnerabilities were found.

High

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

Suggestions:

1. Require service fee paid & use call
o Problem: constructor uses .transfer(serviceFee_) and may revert if serviceFee_ >

msg.value or if receiver is a contract.
o Suggestion: require(serviceFee_ <= msg.value) and replace .transfer with (bool

sent,) = payable(...).call{value: serviceFee_}("") and check sent.

2. Validate router/factory and handle existing pair
o Problem: arbitrary router address / createPair may revert or be malicious.
o Suggestion: check factory != address(0), read existing pair with getPair(...) and

call createPair only if none exists; consider try/catch for safety.

3. Add owner controls/events & reversibility
o Problem: owner can exclude addresses and change fees but there are few events

and exclusions are irreversible for fees.
o Suggestion: add includeInFee(address), includeInReward(address), and emit

events for ExcludeFromFee, IncludeInFee, TaxFeeUpdated,
LiquidityFeeUpdated, CharityFeeUpdated, CharityAddressUpdated,
SwapAndLiquifyToggled.

4. Add timelock / multisig for critical admin actions
o Problem: owner can instantly change fees up to 25% or exclude users

(centralization & rug risk).
o Suggestion: require multisig or a timelock (or at least multi-sig) for

fee/charity/major admin updates in production.

5. Limit or rework _excluded scanning (gas DoS)
o Problem: _getCurrentSupply() loops over _excluded on every transfer O(N)

gas growth; owner could bloat list.
o Suggestion: enforce a max excluded count, document cost, or maintain running

rSupply/tSupply adjustments on exclude/include to avoid scanning each transfer.

6. Expose a toggle and event for swapAndLiquifyEnabled
o Problem: currently set true in constructor with no setter.
o Suggestion: add setSwapAndLiquifyEnabled(bool) (onlyOwner) and an event so

you can pause automatic liquidity behavior if necessary.

7. Rescue functions for ETH/ERC20
o Problem: no owner recovery for accidentally sent tokens/ETH.
o Suggestion: add rescueERC20(token, to, amount) and rescueETH(to, amount)

(onlyOwner) with events but document policy (avoid rescuing user funds).

8. Make charity handling explicit / optional auto-swap

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

o Problem: charity receives tokens (not ETH); teams may expect ETH donations.
o Suggestion: add an opt-in swapCharityTokensToETH flow (carefully, reentrancy-

guarded) or a helper distributeCharity() that owner/charity can call to convert
tokens to ETH and forward funds.

9. Add checks & documentation for decimals and minimum transfer rounding
o Problem: small transfers can round fees to zero due to integer division and

decimals = 9.
o Suggestion: document token unit conversions in README and add tests that

show minimum amounts where fees apply.

10. Require totalSupply_ > 0 and sanity checks in constructor
o Problem: no guard for zero total supply or invalid charity/router addresses.
o Suggestion: add require(totalSupply_ > 0) and require(router_ != address(0)) and

similar sanity checks.

11. Consider making LP recipient configurable or document LP burn
o Problem: LP tokens are sent to 0xdead (permanently locked) important design

choice.
o Suggestion: document this clearly or allow owner/setter to send LP to a multisig

or governance address (if intended).

12. Remove redundant SafeMath (optional) and optimize bytecode
o Problem: Solidity 0.8 has built-in overflow checks; SafeMath is redundant and

inflates bytecode.
o Suggestion: remove SafeMath usage for gas/size savings.

13. Add thorough unit tests & fuzzing for these edge cases
o Tests: (a) transfers between excluded/non-excluded; (b) tiny amounts where fee

rounds to 0; (c) repeated excludes to show gas growth; (d) swapAndLiquify
trigger under various volumes; (e) constructor with existing pair and with
malicious router stub.

14. Add clear on-chain/off-chain audit notes & an operations playbook
o Problem: auditors and ops need to know how to react (e.g., emergency pause).
o Suggestion: add a short on-chain changelog events + off-chain runbook (how to

pause, rescue, change charity) and recommend renouncing ownership only after
mechanisms are tested.

15. Document centralization risk & recommend governance
o Problem: owner privileges are broad (fee changes, exclusions).
o Suggestion: call out this risk in the report and recommend multisig/timelock and

public disclosure of owner/charity keys.

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

Conclusion

The Smart Contract code passed the audit. We were given a contract code with some considerations
to take. And we have used all possible tests based on given objects as files. Since possible test
cases can be unlimited for such extensive smart contract protocol, hence we provide no such
guarantee of future outcomes. We have used all the latest static tools and manual observations to
cover maximum possible test cases to scan everything. Smart contracts within the scope were

-level description
of functionality was presented in Quick Stat section of the report. Audit report contains all found
security vulnerabilities and other issues in the reviewed code.

Well

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort. The goals
of our security audits are to improve the quality of systems we review and aim for sufficient
remediation to help protect users. The following is the methodology we use in our security audit
process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number generators. We
also watch for areas where more defensive programming could reduce the risk of future mistakes
and speed up future audits. Although our primary focus is on the in-scope code, we examine
dependency code and behavior when it is relevant to a particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and whitebox
penetration testing. We look at the project's web site to get a high-level understanding of what
functionality the software under review provides. We then meet with the developers to gain an
appreciation of their vision of the software. We install and use the relevant software, exploring the
user interactions and roles. While we do this, we brainstorm threat models and attack surfaces. We
read design documentation, review other audit results, search for similar projects, examine source
code dependencies, skim open issue tickets, and generally investigate details other than the
implementation.

Documenting Results:

We follow a conservative, transparent process for analyzing potential security vulnerabilities and
seeing them through successful remediation. Whenever a potential issue is discovered, we
immediately create an Issue entry for it in this document, even though we have not yet verified the
feasibility and impact of the issue. This process is conservative because we document our
suspicions early even if they are later shown to not represent exploitable vulnerabilities. We
generally, follow a process of first documenting the suspicion with unresolved questions, then

Smart Contract Code Review and Security Analysis Report for
ALBUBUX BEP20 token Smart Contract

confirming the issue through code analysis, live experimentation, or automated tests. Code analysis
is the most tentative, and we strive to provide test code, log captures, or screenshots demonstrating
our confirmation. After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and
successful mitigation and remediation is an ongoing collaborative process after we deliver our
report, and before the details are made public.

